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Extension of Massive Scalar Quasinormal Modes of 
Kerr and Schwarzschild Black Holes 

Mil~n M~szfiros 1 
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In the case of Kerr and Schwarzschild black holes there exist continuous 
standing wave solutions in the total interval 0 < r < oo at certain real frequen- 
cies. This means that we can see into these black holes at these frequencies with 
gravitational-wave detectors, studying the radial structure inside the event 
horizon, too. 

1. INTRODUCTION 

A black hole can be perturbed in a variety of ways other than by 
incidence of gravitational waves: by an object falling into it, or by the 
accretion of matter surrounding it. Or, we may consider a black hole being 
formed by a slightly aspherical collapse of a star settling toward a final 
state described by the Schwarzschild or Kerr solution. 2 In all these cases, 
the evolution of the perturbations--if  they can be considered as " sma l l " - -  
can, in principle, be followed by expressing them as superpositions of the 
basic solutions. However, we may expect on general grounds that any 
initial perturbation will, during its last stages, decay in a manner character- 
istic of the black hole and independently of the original cause. In other 
words, we may expect that during the very last stages, the black hole will 
emit gravitational waves with frequencies and rates of damping characteris- 
tic of itself, in the manner of a bell sounding its last dying pure tones. 

IDepartment of Physics, The Real Green Society, 11 Rutafa Street, Bldg. H, 1165 Budapest, 
Hungary. 

2Regarding the Schwarzschild solution, see Chandrasekhar and Detweiler (1975a), Gunter 
(1980a), Cunningham et al. (1978, 1979). Regarding the Kerr solution, see Detweiler 
(1977a, 1978, 1979, 1980) and Detweiler and Szedenits (1979). 
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These considerations underlie the formulation of the concept of the quasi- 
normal modes of a black hole. In other words, these modes determine the 
pure dying tones of a perturbed black hole (Chandrasekhar, 1983). 

Precisely, the quasinormal modes are defined by the solutions of the 
perturbation equations belonging to the complex characteristic frequencies 
and satisfying the boundary conditions appropriate for purely ingoing 
waves at the horizon and purely outgoing waves at infinity. 

The study of the quasinormal modes of a black hole has attracted 
much attention in view of the detection of the gravitational radiation. It 
plays also a fundamental role in the study of the stability of black hole. 
[The stability of the Schwarzschild black hole is established (Regge and 
Wheeler, 1957).] On the other hand, the author professes, together with 
H.-J. Treder (personal communication), that there are "enormous hopes of 
Peterson's method of gravitational lens interference to detect black holes, 
brown dwarfs, super Jupiters, clear up the missing mass problem." Perhaps 
the gravitational quasinormal modes of black holes may be observable by 
advanced laser-interferometric gravitational-wave detectors. 

2. SCALAR MASSIVE PERTURBATIONS OF BLACK HOLES 

2.1. Wave Equation of Scalar Massive Perturbations 

The scalar perturbations of black holes could be observationally 
relevant if "boson stars" prove to be viable candidates for dark matter and 
missing mass, respectively. If an object made up of self-gravitating scalar 
fields (Simone and Will, 1992) should become unstable and collapse to a 
black hole, it would radiate gravitational and scalar waves in the form of 
quasinormal modes. A purely spherical collapse will radiate scalar waves, 
but not gravitational waves. In general, this motivates the interest in 
massive scalar quasinormal modes (Simone and Will, 1992; Gal'tsov and 
Matiukhin, 1992). 

These resonant, complex (Colpi et al., 1986; Breit et al., 1984; Gleiser 
and Watkins, 1989; Seidel and Suen, 1990; Friedberg et al., 1987; Lee and 
Pang, 1989) or real (Seidel and Suen, 1991) quasinormal modes are 
characteristic of the Schwarzschild, Kerr, etc., geometries; for each kind of 
external perturbation (e.g., scalar, electromagnetic, gravitational) they have 
discrete, specific spectra (Simone and Will, 1992; Gal'tsov and Matiukhin, 
1992). They are the solutions of a second-order hyperbolic partial differen- 
tial equation (Teukolsky, 1973; Press and Teukolsky, 1973) 

L#<~)~F (~') = T (1) 
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where ~(s) is a second-order linear differential operator depending on s, the 
spin weight of the field (e.g., scalar, s = 0; electromagnetic, s = + 1; gravi- 
tational, s = +2), and on the black hole parameters (e.g., mass M; angular 
momentum per unit mass a; charge Q), q~(') is a variable depending on the 
field and T is a function of the source of the field (in vacuum, T = 0). 

Mathematically, the normal modes correspond to solutions of equa- 
tion (I) with a complex frequency 

W(s) = r ~. e - i r 1 7 6  9 W = W r "4- i c o  i (2) 

with wi < 0 (decay of amplitude in time), and satisfying the boundary 
conditions of purely outgoing waves, or waves that propagate away from 
the potential barrier at + oe or - 0 %  the latter corresponding to traveling 
across the horizon to the interior of the black hole. 

In the case of massive scalar quasinormal modes, W(s) = ~ (for s = 0) 
is given by the Kle in-Gordon equation 

(• - # 2 ) ~  = 0 (3) 

where [] is the curved spacetime d'Alembertian on the black hole back- 
ground, and/~ is the inverse Compton wavelength characteristic of the field 
(Simone and Will, 1992; Gal'tsov and Matiukhin, 1992). 

For Schwarzschild and Kerr black holes the massive scalar wave 
equation (3) in Boyer-Lindquist coordinates r, 0, q~ and with r e a l  f r e q u e n c y  

co (Boyer and Lindquist, 1967; Misner e t  al . ,  1973) has the form 

, 

a2sin2 A + sin20J002 

8rO (A~r ~) sin 21 080~ ( 8 " \  2 2 s i n 0 - ~ ) - #  p ~ = 0  (4) 

Here, M is the black hole mass, a M  its angular momentum 
(0 < a <- M), p 2  = r 2 + a 2 cos 2 0, and A = r 2 - -  2 M r  + a z (Simone and Will, 
1992; Gal'tsov and Matiukhin, 1992). The form of solution 

= g(co)Rtm~(r)Sl , ,~o(O)e e dco (5 )  
I = O  m =  - - i  c~a 

leads to separation of variables in equation (4), resulting in ordinary 
differential equations for Rlmo~(r) and S t ~ ( O ) .  

In equation (5), l is the wave's angular momentum and m its azimuthal 
projection. The separation of equation (4) into radial and angular variables 
gives (Teukolsky, 1973; Simone and Will, 1992; Gal'tsov and Matiukhin, 
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1992) 

d ( dRtmo,~ a2)2 
A dr A dr ] + [092(r2 + - 4Mamoor + m2a2]Rtm~o 

" lm - -  (092a2 + p2r2 + Z(,~))ARtm~o = 0 (6) 

dSlm~~ ~ m 2 - - - -  lm 1 d sin 0 - - - - ~ )  -4- [a2(09 2 - /12)  cos 2 0 sin 2 0 + 2(,o.)]&.,,o = 0 (7) 
sin 2 0 dO 

The solutions of  equat ion (7), &m,o(O)-  S, are spheroidal (oblate)  wave- 
functions; in the Schwarzschild case, when a = 0, they reduce to the usual 
spherical harmonics  

Sl,,o,(O)e-imp = $7'( - a 2 c  2, cos 0) > YT'(cos 0), c 2 = 092 _ / , 2  (8) 
a = 0  

lm In equat ion (6) and (7) the eigenvalues 2(,0,) o f  the spheroidal wavefunc- 
tions (Flammer ,  1957; Seidel, 1989) are given by an expansion in even 
powers o f  ac, 

1m __ ~'~ r (ac)Zk 
(09#) - -  / , J ( 2 k )  

k 

= t(l  + 1) 

ft2m = h(l + 1, m) - h(l, m) - 1 (9) 

l(l - m)( l  + m) 
h(l, m) - 

2 ( t  - + �89 
The remaining coefficients are similarly functions o f  l and h(l, m) (Seidel, 

tm 1989). Hence,  2(~o~) is invariant  under  both  co--+-co  and m - - + - m .  
In general, equat ion (6) for  R~m,o(r) is not  solvable analytically, but  

with the changes 

dr* r2 + a 2 
Ytmo~(r) = (r 2 + a 2) l/2Rlm~(r), - -  -- - -  (10) 

dr A 

it becomes a Schr6dinger-like radial equat ion or Regge-Wheeler - l ike  equa- 
tion 

d 2 Y l m w  2 
7/r--g 5- + [09 - V(09, r)]  Ylmo~ = 0 ( 1 1) 

with a generalized Regge -Whee le r  potential  

A# 2 4Mam09r 2 2 lm - a m + A(2(,o~) + (0) 2 - -  # 2 ) a 2 )  
V(09, r) r2 + a~ + (r 2 + a2)2 

A(3r 2 - 4Mr  + a 2) 3A2r 2 
q- ( r  2 q- a2)3  ( r  2 q- a2 )4  (12) 
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In equations (10) and (11) r* is the "tortoise" coordinate that spans the 
interval ( -  oo, oo) when the radial coordinate r is in (rH, 00), and rH is the 
horizon of the black hole (Misner et al., 1973). 

2.2. Solutions of Wave Equation of Scalar Massive Perturbations 

The problem of solving equation (6) with boundary conditions has 
been studied in different ways. Since equation (6) is insolvable analytically, 
it is transformed into equation (11) by equation (10), and after this 
equation (11) is solved by approximations or polynomial methods or other 
techniques, and the polynomial or approximate or other solutions should 
be connected with the general solution ~(r, 0, q~, t) by equation (5). How- 
ever, this does not always happen, as the following short summary shows. 
These methods of solution investigate the Regge-Wheeler-like equation or 
Schr6dinger-like equation (Teukolsky, 1973) exclusively. [Naturally, equa- 
tion (11) is also not solvable analytically, in general.] 

One approach requires selecting a discrete value of co, integrating the 
differential equation, and checking that boundary conditions are satisfied 
(Chandrasekhar and Detweiler, 1975b; Detweiler, 1977b, 1980). Since this 
happens only for a discrete set of values, the complex co-plane has to be 
completely surveyed in the searching process. This can be expensive and 
time-consuming, especially if one is interested in variations of the results 
with a wide range of possible parameters. 

Other techniques include the use of a parametrized approximation of 
the potential for which exact solutions are known (Blome and Mashhoon, 
1984; Ferrari and Mashhoon, 1984; Gunter, 1980b, 1981), an analytical- 
numerical hybrid (Leaver, 1985) using an infinite-series representation of 
the solutions of the radial wave equation with numerical treatment of the 
quasinormai mode equation involving continued fractions, and the 
Laplace-transform method (Nollert and Schmidt, 1992). 

Some authors use an alternative technique, a semianalytical approach 
that calculates the quasinormal mode frequencies using a WKB approxima- 
tion (Schutz and Will, 1985; Iyer and Will, 1987; Iyer, 1987; Kokkotas and 
Schutz, 1988; Seidel and Iyer, 1990; Guinn et al., 1990). It relies on the 
similarity between the black hole radial perturbation equation and the 
one-dimensional Schrfdinger equation for a potential barrier [see the 
previous references, together with Outsuki and Futamase (1991), Leaver 
(1992), Gal'tsov and Matiukhin (1992), and Simone and Will (1992)]. 

However, in case of radial SchrSdinger equations of quantum mechan- 
ics, the polynomial method cannot be used in the case of a continuous 
spectrum of energy E. (This case corresponds to the scattering processes 
from the viewpoint of quantum mechanics.) Furthermore, the quasiclassical 
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WKB approximation can be used for slowly changing V(r) potentials only 
(M6sz/tros, 1989): 

(meh /p  3) " l d V / d r l  1 (130 

In the case of the frequently occurring power potential V(r) = e r - 8 ,  ~ > O, 
equation (13) has the form 

r >> [(meh "Icr ~)/p31,::+I e 0 (14) 

It can be seen from equation (12) and inequality (14) that in the case of 
V(r) = er  -8 ,  the solutions of(11) cannot be WKB approximated about r = 0 
(M6szfiros, 1989) if a = 0. Furthermore, it can be seen from equation (13) 
that in the case of p ~ 0  the approximation is not valid (M6szfiros, 1989). 
The approximation is also not valid at the turning point E = V(r), so the 
WKB wavefunction produces the approximate solution of the Schr6dinger- 
like equations only away from the turning points (M6szfiros, 1989). 

The approximate, polynomial, numerical, and other solutions are 
essential, but the determinations are difficult and depend on V(r).  More- 
over, the radial standing wave solutions R#~,o(r) of the original equation 
(6), more precisely, the radial structure of the black hole and its neighbor- 
hood with respect to problem of detection, has not been sufficiently 
investigated. In connection with equation (6), the question is raised: Can 
the general nature of the solutions of equation (6) be investigated without 
knowledge of the analytical, approximate, polynomial, numerical, or com- 
bined solutions with the help of a qualitative theory of second-order linear 
differential equations so the results are true with respect to classes of 
fast-changing or singular potentials? 

3. QUALITATIVE INVESTIGATION OF EQ. (6) 

Not enough use has been made of the results of the qualitative theory 
of the second-order linear equations for equation (6), notwithstanding that 
we have managed to point out on this basis many intriguing inconsistencies 
of axial and time-symmetric gravitational waves in the case of singular 
potentials (M~szfiros, 1989). The application of the qualitative theory in 
cosmology has also resulted in many remarkable problems (M6szfiros and 
Molnfir, 1990, 1991). 

Equation (6) is a second-order linear differential equation with the 
form 

A(AR')' + Q ( r ) R  = 0 1 
Q(r)  ,= ~o2{(r 2 + a2) 2 - aZA} - 4 g a m ~ r  + rn2a 2 - Iz2Ar 2 - 2A (15) 

A ,= r 2 - 2 M r  + a z 

Hereafter, the indices of R(r) ,  S(0) ,  and 2 are omitted. 
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The quali tat ive theory  o f  second-order  linear equat ions  ( L e d e r m a n n  
and Vajda,  1982) a t tempts  to answer  quest ions such as the following: Is a 
solution always bounded?  Are there funct ions bounding  a solution f rom 
above  or f rom below? Is a solution mono tone?  Does  a solut ion have a finite 
or  infinite number  o f  zeros? Is a solut ion stable? Equa t ion  (15) has the 
trivial solution R(r)  = 0 for  0 -< r < ~ .  This trivial solution will be excluded 
f rom further  considerat ion.  

3.1. The Case of A =~ 0 

I f  A # 0, that  is, if r # r_+ = M _4-(M 2 -  a2) 1/2, then the radial equat ion 
(15) with the t r ans fo rmat ion  

leads to the S tu rm-L iouv i l l e  fo rm (M6szfiros, 1989)" 

P" + q(r )P = 0 

. . [ - w 2 ( r  2 q- a 2 )  2 - -  4Mamo~r  + m2a 2 - 3(2r - 2 M )  2 
q[r) ,= L X2- (16) 

(egZa 2 +/~2r2 + 2) - ( 1 + r - M)-] 

/ A 

Because of  this t r ans fo rmat ion  R(r)  = P ( r ) A  -1/2, the n u m b e r  of  zeros 
of  solutions, that  is, the oscillation, is not  influenced by mult iplying (or  
dividing) by A - m  and thus is the same for  equat ions  (15) and (16) 
(M6szfiros, 1989). 

In equat ion  (16), q(r) is factorizable as follows: 

q(r) = q;(r) + q2(r) + q 3 ( r )  + q , ( r )  +q~( r )  + q6(r) (17) 

where 
o92(r 4 + 2aZr 2 + a 4) 

ql(r)  . - r 4  _ 4 M r 3  -k- 4M2r 2 + 2a2r 2 - 4 M a 2 r  + a 4 

- 4Mamcor  

qz(r) . -  r4 _ 4 M r 3  + 4M2r  2 + 2a2r 2 _ 4 M a 2  r + a4 

m2a  2 

q31,r)'=r4 _ 4 M r  3 + 4M2r  2 + 2a2r 2 _ 4MaWr + a 4 

3( - 4 M  2 + 8 M r  - 4r2)2 - l 
q4(r):= r4 _ 4 M r 3  + 4M2r  2 + 2a2r 2 _ 4 M a 2  r + a4 

( o 2 a  2 --t- ]22r 2 -4- J, 

qs(r)"= r 2 - 2 M r  + a 2 

M - r - 1  [ \  

q6~'r)"=r2 - 2 M r  + a 2 

(18) 
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If r ~ oo (asymptotic case), then ql(r) --* 092, q2(r)-oO, qs(r) ~ 0 ,  
q4(r)-o0, q s ( r ) - * - p  2, and q6(r)~0.  Namely, in the case of  r ~ o o ,  
q(r) ~o92 _#2 ,  that is, 

lim q(r) = co 2 _ # 2 (19) 
r ~ c x 3  

It can be seen from equation (19) that at r = m equation (16) has the form 

p .  + (o92 _ p z ) p  = 0 (20) 

Using the transformation R ( r ) =  P ( r ) .  A 1/2, we obtain the solution of  
equation (20) at infinity 

(i) R(r) = AI sin([o9 2 - #211/2r + B1) �9 A -j/2 

- A l s i n ( [ ~  if c o > #  (21a) 
( r  2 - -  2 M r  + a 2 )  1/2 

(ii) R(r) = (Azr  + B2) �9 A -1/2 

A2r + B2 
if 09 =/~ (22a) 

- (r 2 - 2 M r  + a 2) 1/2 

(iii) R(r) = [A 3 exp(]o9 2 - #21VZr) 

+B3exp ( - - Io92 - -#2] l /Zr ) ] 'A - I /2  if 0 < O 9 < #  (23a) 

In the solutions A~, Az, and A3 and B1, B2, and B3 are arbitrary integration 
constants. Because of the correspondence of theory and observations, we 
obtain bounded solutions in equation (23a) if and only if A 3 -  0. 

Hence, in the case of r--+ ~ we expect solutions similar to the 
solutions (21a), (22a), and (23a). Applying the usual perturbation tech- 
nique (Kato, 1966) for the asymptotic case, the more exact analysis gives 
that 

(i) R(r) ,., A4 sinV(og2 - #2)i/2 r 
l 

(ii) R(r) ~ Asr-3 /4  sin[(8M#2)1/2 r l/~_ + Bs)] if o9 = # (22b) 

(iii) R(r) ,~ A6 rM(2'~ 1 

• exp(-Iw2-#2] ' /Zr)  �9 A -1/2 if 0<o9 < #  (23b) 

In the solutions (21b), (22b), and (23b), A4, As, and A6 and B4, Bs, and B6 
are also arbitrary integration constants. Furthermore, in equation (21b), 
IrO(l/r)  l is bounded. 
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It can be seen from the solutions (21a)-(23a)  and (21b)- (23b)  that in 
the cases of  r = ~ and r ~ oo the rotation of black holes cannot play a 
role. That is, the Schwarzschild black hole and Kerr black hole behave 
similarly at infinity (for the observer). 

If r - - ,0  (singular case), then it can be seen from equations (18) 
that ql(r)--*e92, q2(r)--*0, q3(r)-~m2/a z, q4(r)--+-6M2/a 2, q ~ ( r ) ~ -  
(c02a2+2)/a 2, and q 6 ( r ) ~ ( M - 1 ) / a  2. Namely, in the case of r -~0,  
q(r) ~ (6M 2 + M + rn 2 - 2 - 1)/a 2, that is, 

- 6 M 2  + M + m 2 -  2 - I 
lim q(r) - a2 (a ~ 0) (24) 
r ~ 0  

It can be seen from equation (24) that for r = 0, equation (16) has the form 

{ - 6 M 2  + M + m 2 -  2 - 1) 
P " +  \ a~- P = 0 (25) 

Using the transformation R(r) = P(r) �9 A-~/2, we obtain the solution at the 
singular point in the case of  a Kerr black hole (a ~ 0), 

(i) R(r) =Avsin(Cr +B7)  " a -1, C : = [ ( - 6 M 2 + M + m 2 - 2  - 1)a-2] 1/2 

if - 6 M  2 + M + m  2 > 2 + 1  (26) 

(ii) R(r)=(Asr+l~8)a -j,  if - 6 M Z + M + m 2 = 2 + l  (27) 

(iii) R(r) = [.49 exp(IClmr) + B9 exp(-[C[~/2r)]a -~ 

if - 6 M 2 + M + m Z < 2 + l  (28) 

In the solutions (26)-(28),  A7, As, and A 9 and BT, Bs, and B9 are also 
arbitrary integration constants. 

In the case of  a Schwarzschild black hole (a = 0), if r ~ 0 ,  then 
equation (15) has the form 

A(AR') '  = 0 (29) 

Since A ~ 0, only A -~0, so equation (29) becomes 

AR' = A l O (30) 

where A~o is also an arbitrary integration constant. The solution of  
equation (30) is 

R ( r ) =  A ~ ~  I 2M r ~  + B t ~  (a = 0 )  (31) 

where B10 is also an arbitrary integration constant. 
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In the nonasymptotic  or nonsingular cases, we should apply the other 
results of  the qualitative theory of  second-order linear equations 
(M6szhros, 1989). 

3.2. The Case of A = 0 

I f  r =r_+ = M + (M 2 - a  2)~/2, then A = 0 .  In addition to the cases 
r ~ 0  and r ~ ~ ,  the investigation of  this case is very important:  How do 
the solutions behave in the neighborhood of  event horizons ( r -  r e ) ~  0, 
or rather, while crossing them? 

Since now A = 0, the method applied in Section 3.1 cannot  be used. It 
can be seen from equation (15) that 

Q(r + ) -'= ( 2o9Mr + - ma) 2 (32) 

On the basis of  equation (32), there exist two cases: Q ( r + ) > 0  or 
Q(r+_) = O. 

1. The typical case is when Q(r+ ) > 0. Combining the usual perturba- 
tion technique (Kato,  1966) with the local investigation, we find the 
solution 

�9 t/12o9Mr~a_s -- real /3 
R(r) ..~ A,I sink- loglr - r e I + B,, (33) 

where A~I and B~; are also arbitrary integration constants. It  can be seen 
from the solution (33) that in the case of  A - -0  and Q(r+_ ) > 0 the solution 
of equation (15) has infinitely many zeros in the intervals 
r + - e < r < r + , r +  < r < r + + e ( e > O )  a n d r _ - e < r < r  , r _ < r < r _ + e .  
Thus, the standing wave solution cannot be continued analytically across 
the event horizons r+ and r ,  since the solution (33) is singular. It can be 
seen also from (33) that this solution is valid for the Schwarzschild black 
hole and the Kerr  black hole simultaneously. 

2. The atypical case is when Q(r+_) = 0. Then it can be seen from (32) 
that 

ma 
09+ . -  2Mr+ (34) 

which means a favored frequency. In the case of  a Schwarzschild-like black 
hole a ~ 0, and so o9+ --, 0 and co_ --. oo. In case of  an extreme Kerr  black 
hole a ~ M ,  and so o9+ ~o9 . 

Combining the usual perturbation technique (Kato,  1966) with the 
local investigation, we can write the solution of  equation (15) in the form 
of a power series 

R(r) = ~, ( - 1)" (r - r_+)n (35) 
. : 0  
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I t  can be seen from the solution (35) that in case of  co ~ c9_+ the solutions 
can cross over (can be continued analytically across) the event horizons of  
a Kerr  black hole. Namely, the solution is free from all kinds of  singularity. 

4. SUMMARY 

It can be seen from the investigations of  Section 3 on the basis of  
equation (34) that the standing wave solutions of  equation (15) can be 
continued from infinity to r in case of  a small angular momentum a - ~  0 
(Schwarzschild-like case). However, these low-frequency oJ+ solutions can- 
no~ cross over (cannot continue analytically beyond) r_ ,  since, on the basis 
of  equation (34), this is possible at only the high frequency ~o . Namely, 
the frequency should increase continuously in the interval r_ < r < r+ as 
r -~ r , or jump at r ,  and vice versa. Since in the case of  a - ,  0, r --, 0, 
these solutions can be continued to the singularity r = 0. 

In case of  great angular momentum a - ~ M  (extreme Kerr  case), 
according to equation (34), o~+ - ,  ~o_ (in the limit ~o+ = o~_ = m/2M),  and 
so because of  equation (5), the 'solutions of  equation (15) can be continued 
analytically from infinity to the singularity r = 0 at these frequencies. 

On the basis of  equations (5) and (34) it can be seen that in the case 
of  Kerr  and Schwarzschild black holes there can exist continuous standing 
wave solutions in the total interval 0 < r < ~ .  This means that we can see 
into the black holes at these frequencies with gravitational-wave detectors, 
studying their radial structure inside the event horizon, too. 
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